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Abstract

In this paper, the interface crack problems of a multilayered anisotropic medium under a state of
generalized plane deformation are considered within the framework of anisotropic theory. A general solution
procedure is introduced such that it can be uniformly applied to media with transversely isotropic, ortho-
tropic, monoclinic, etc. layers. The problem is reduced to the solution of a system of singular integral
equations by means of Fourier transform method and the stiffness matrix formulation. A Jacobi polynomial
technique is then used to solve the integral equations numerically. The stress intensity factors are provided.
The stress intensity factors have been calculated numerically and displayed graphically. © 1999 Elsevier
Science Ltd. All rights reserved.

1. Introduction

In recent years, the expanded use of composite materials in many modern engineering appli-
cations has attracted considerable research attention to the damage analysis of a laminated medium.
In order to ensure structural integrity, understanding of fracture behavior of this structure is of
great importance. Cracks are likely to occur on grain boundaries and bimaterial interfaces in
polycrystal alloys and composite materials. It is, therefore, of practical importance to be able to
assess the stress fields near such interface cracks.

The problem of an interface crack between dissimilar isotropic half-spaces was studied by many
authors such as Williams (1959), England (1965), Erdogan (1965), etc. Solutions to interface crack
problems of dissimilar anisotropic half-space can be found in the works of Clements (1971), Ting
(1990) and Suo (1990). In Chatterjee (1977), the problems of laminated composite beam-type
structures containing an interlaminar crack were considered where the interlaminar is isotropic.
This work may have a significant contribution to the failure of laminated composites. Thangjitham
et al. (1993) extended this method to the interlaminar crack problems of a laminated anisotropic

* Corresponding author. Fax: 00 86 21 62820892; e-mail: spshen@online.sh.cn

0020-7683/99/$ - see front matter © 1999 Elsevier Science Ltd. All rights reserved
PI: S0020-7683(98)00199-1



4252 S. Shen et al. | International Journal of Solids and Structures 36 (1999) 4251-4268

medium, assuming that the crack was embedded within a thin isotropic matrix interlaminar region
bounded by two adjacent anisotropic layers. This assumption circumvents the difficulties associated
with the oscillatory singular behavior of the stress field near the crack tip, but raises questions,
such as how to determine the thickness of the interlaminar; and it is also only valid for composite
material laminates. When each layer of the laminate is homogeneous and anisotropic other than
composite, i.e. without the same matrix, the thin interlaminar will not exist.

Many of the anisotropic materials used in engineering exhibit orthotropic and transverse iso-
tropic symmetry; in such media degenerate cases may exist, i.e. an eigenvalue p; may be a multiple
root as obtained from Stroh’s method. If the degeneracy is ‘semisimple’, i.e. if the number of
independent eigenvectors is equal to the multiplicity of the eigenvalue, the solution can be obtained
in the same way to the ‘simple’ (Ting, 1988). If the degeneracy is ‘nonsemisimple’, a different
method should be used to solve the problem, which is the main purpose of this paper.

In this paper, we consider the interface crack problem of a laminated anisotropic plate under a
state of generalized plane deformation. Instead of assuming a thin isotropic matrix interlaminar
region, we assume that each layer of the laminate is ideally bonded. For the sake of generality, all
layers are considered to be arbitrary anisotropic, which may be isotropic, orthotropic or transverse
isotropic symmetry, etc. and they may be composite or homogeneous. The general solution
procedure is introduced for these degenerates cases. As an efficient approach to the analysis of
layered media, the stiffness matrix formulation (Chatterjee, 1977; Choi and Thangjitham, 1991) is
extended to the current crack problem. By means of Fourier transforms the problem is reduced to
a system of simultaneous algebraic equations by using the Jacobi polynomial approximation, the
stress intensity factors are obtained in terms of the solutions of the corresponding integral equa-
tions. Numerical methods are employed to determine the stress intensity factors, which have been
displayed graphically.

2. Governing equations and general solution

As shown in Fig. 1, consider an N-layer laminated anisotropic plate containing an interface
crack of length 2a located between the j-th and (j+ 1)-th layers. The laminate layers are perfectly
bonded except at the crack.

In order to maintain generality in the analysis, each layer of the laminated plate is considered
to be arbitrary anisotropic. The surface tractions are applied such that all field variables are only
functions of x, and x,, i.e. a state of generalized plane deformation is assumed:

up =u (x1,X2), U =u(Xy,x5), Uz =uz(xy,Xx;)
where, u,, u,, u; represent the displacements in the x,-, x,-, x;-directions, respectively. The general
displacement vector is defined as

u=[u u u3]T

The transform pair for a generic function g(x,, x,) is defined as

+ o0 + o0

isX 1 5 isx
g(s, x,) = J glx, x,) e dx, g(x,x,) = 271J g(s, x,)e" ds (1)

— 0
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Fig. 1. Configuration of an anisotropic laminate with an interface crack.

where the overtilde ~ denotes the transformed quantity, s is the transform variable, and we let
xl = X.
Introduce the following matrices

(Q)ik = Cilkla (R)ik = Cilkza (T)ik = Ci2k2: (i,k = 132a 3)

where C;,, are the elasticity constants. Matrices Q and T are symmetric and positive definite due
to the strain energy being positive.

By letting y = —isx, and using the Fourier transform, the equations of equilibrium in the
absence of body forces may be expressed as follows:
0% o
T — +R+R")—+Qi=0 2
o FRERDZHQ @
or in the form
0
2,1 ="Nn 3)
Y
where
ﬁ _ T7 1 RT T7 1
n= o1 N= [ ] “4)
[R“rTay]u RT 'R"—Q —RT"!

It can be proved that N admits no real eigenvalues, and its six eigenvalues form three conjugate
pairs (Suo, 1990). Without the loss of generality, let p; (i = 1, 2, 3) be the eigenvalues with positive
imaginary part and &; be the corresponding eigenvectors. In this paper, the assumption that p; are
distinct is not necessary.

If p,, is a single root, the solutions to eqn (3) can be readily obtained as
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n:(y,p;) =& e Q)

If p;is a k-fold root (1 < k < 3) and there exists only one independent eigenvector &; associated
with p,, the solution to eqn (3) should be written as

n:(y,p;) =& e
i 1 , )
"i+j(y9pi) = |:€i+j+ Z nyn(N_PiI)n€i+_/:| e’ (j=1,...,k=1) (6)
n=1
where

(N_pil)/+]§i+j =0, and (N—p,—])’fiﬂ. #£0

In fact
€f+_/=ili’ & =jI(N=pI) /¢,
then
e = [5”4—21(] & ”]e“ ™

So, the general solution to eqn (3) is

[Ein:(v, p) +Ai()n:(y, P))]

1

’,:

Mw

n

[Ei()C:(y) e+ Ai(S)Zi(y) e’ )

|
Il

where {; can be determined by eqns (6) and (7).
Let

a; a’ a(j)
_ ! r__ ! ) — !
é_h}md@_h]“'@_LA

C:Fm]
l h;(y)
then, it follows that

3
Z '—‘I(S)gt e + A (S)g, e}p,] AE] + EAEZA (9)

i=1

in which
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A =1[g g gl E=[E E, ], A=A A, A
E, = diag[e "], E, =diag[e "] (i=1,2,3) (10)

From the constitutive relations, the stresses are given by

Qv

12

0 0
2| = <—isRT+T>ﬁ = —is <RT+T>I‘1 (11)

t= 0x, dy

Qe

03>

Therefore, eqn (4) can be rewritten as

| (12)
= [z’s‘1 J

the above and eqn (8) imply that

t = —is[BE,E+BE,A] (13)
where

B(y) =[h; h, h;]

It is obvious that both A and B are non-singular. In Appendix A, we prove that BA™' was
independent of y.

3. Statement of the problem and the singular integral equations

For each layer, the general solutions for displacements and stresses are expressed in terms of six
unknown constants =, and A; i =1, 2, 3. Consequently, complete solution for a N-layer plate
requires a set of 6N appropriate boundary and interface conditions to determine 6 N unknown
constants.

The problem subjected to the following boundary and continuity conditions:

O =f.(x); [x] <o

Ox =fi(x); |x] <

W =i |xl<oo, k=12,...,-1D,+1D),....(N—=1)

O =i IxI<oo, k=1,2,...,(N=1) (14)
and

W, =W/ a<l|x| <

()51 =te(x) = [to1 102 t:]"; x| <a

fﬁdu:o (15)
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where the subscripts k refer to the layer number, the superscripts + and — indicate the cor-
responding value evaluated at the upper/lower surface of the plate and f,, f, t, are the distribution
functions for the applied traction on the upper, lower bounding surfaces and crack surface,
respectively. C is any contour enclosing the crack and eqn (15); represents the single value of
displacements.

Introduce

d
Y1) = ()= ] x| <o (16)

Then, the displacement continuity condition outside the crack and the single-valuedness of dis-
placements can be rewritten as

Y(x) =0, a<|x|]< oo, Ja Y(x)dx=0 (17)

So far, a system of 6N equations is yielded for the 6N unknown constants. In order to circumvent
lengthy algebraic manipulations, the stiffness matrix formulation (Chatterjee, 1977) is extended to
the analysis of current interface crack problems under a state of generalized plane deformation.

The traction vectors t*(s) of the k-th layer can be expressed in terms of the corresponding
displacement vectors ¥ (s) as

v -k a 18
-] r

where k; is the 6 x 6 local stiffness matrix of the k-th layer, which is given in Appendix B (which is
Hermitian when p; is distinct).
We also can rewrite eqn (18) as

[F } B [kﬁl k’fz} [&:} a19)
—t ) K, K5, | Ldp
where, df = (i) and k&(s), i, j = 1, 2 are the 3 x 3 submatrices of k; (s).

To be concise, we introduce

51(5) = &1*(5), 5N+1(5) =dy (s)
o1 (s) =di () =df () k#J

Then combining eqns (14) and (19) the traction continuity condition on the crack plane can be
written as

klesj‘i‘kazaf +k/ﬁlaﬁ1 +kj1+215j+2 =0 (20)

From eqns (16) and (17), one can obtain
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Ay =87 ()= (9) = ; J ) e dx 21

Let
d; =6, +C/Ad,,, d, =6, ,+CAd,, (22)

where 5_,-+1 is a vector with four components representing the interfacial displacements between the
j-th and (j+ 1)-th layers without crack and C;; i = 1, 2 are the 3 x 3 unknown constant matrices
yet to be evaluated with C,—C, = L.

In Appendix B, we derived the asymptotic nature of the matrix s~ 'k.(s) as

1 Y. 0
lim —k.(s) = [ }

s>+ g 0 Y}:l
lim Lk R 23
sJI}l@E k(s) - 0 _Y;I ( )

where Y, = i/AB™', is Hermitian (Ting, 1988; Yang et al., 1997).
So, the asymptotic behaviors of s~ 'k,(s) and vector d,(s) can be expressed as

3 3 3
l_vlggoi [';;g ll;;zﬂ _ [k'(;w kzj lim 5:(5)=0, k=1,2...,(N+1) (24)
Combining eqns (20) and (24), C; are readily evaluated as
C, =k, K, C,=—-Kk.kb, (25)
in which the matrix k. is defined as
k. = [k, + k]! (26)

Through successive applications of eqns (14) to the layer stiffness matrix eqn (19), together with
eqns (20), (22) and (25), a global stiffness matrix equation for an N-layer medium containing an
interface crack between the j-th and (j+ 1)-th layers is constructed as

k!, 6, +kl,0, =1,
K5 0, + (K, + K1), +KEE 16, , =0
k=1,2....G=2).+2),....(N—1), j>3
K5i'8, (kb K )8 KLS, = — Kok, KL A,
D104 (Khy + K1), + K58, = (KT KR Kby, — Kook K L)Ad
kiﬁlsﬁl + (k55" +k'ﬁ2)5j+2 +kj1+22‘§j+3 = —kii'k, jzzooAajH
IZVI 5N+k}2\[251v+1 = _fl (27)

which can be expressed in matrix notation as
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K3 = F+GAd (28)

where K(s) is the 3(N+1) x 3(N+ 1) banded and Hermitian global stiffness matrix with half band
width 6, d(s) is the vector of length 3(N+ 1)-component column for the unknown interfacial
displacements, f(s) is the vector of length 3(N+ 1)-component column representing the prescribed
traction applied on the upper and lower bounding surfaces, G(s) is the 3(N+1) x 3(N+ 1) matrix
containing the geometry and material properties of the j-th and (j+ 1)-ith layers, and Ad(s) is a
3(N+ 1)-component column representing the crack surface displacements.

Combining eqns (19), (22), (25) and taking the inverse Fourier transform, a system of integral
equations for i is obtained as

(@ T ] ) 1 [+ .
th, = L —M(s) e*I ds [Y(r)dt+ — uls)e™ds, |x| < oo (29)
2n ) 1) s 2n |
where
2
M= — leqlkock/-ZZOO—F Z kliJ/;]le
n=1
2 . ~ ~
p(s) = Zl k/lJZl(L(;+n)1fu—L(f+n)(N+1)f1) (30)
with

. i1 i1 . . i1 i1 .
Hn = _L(,/‘+n)jkll2kwk/1+ioo +L(,/’+n)(j+ 1)(k11_’i kxk/22oo - ]22kookll_.ioo) +L(_/’+n)(j+ Z)k/;i kookIZZm
(3D

and L;(s) are the 3 x 3 submatrices of L(s) = K~'(s).

For the purpose of examining the singular behavior of the integral equations, the asymptotic
behaviors of the matrix s~ 'M(s) and of the forcing vector u(s) must first be investigated. From
eqns (24) and (30), the corresponding asymptotic expressions are obtained as

1 . ,
IJI‘IEIEO EM(S) = - jlﬁiokcoka2oc = _Moo
\}|i_rpw u(s) =0 (32)

By employing eqn (23) as s > 0, we have
Mol == (Y, +Y) (33)

which means M, _, is Hermitian. To make further progress, write M, in its real and imaginary
parts:

M., =D, +iW, (34)

where D, is real and symmetric and W, is real and antisymmetric.
Similarly, for s > 0, from eqn (21) we can obtain
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M-! = _(Y/H +Y)) (35)

M_, =-D,+iW, (36)
From eqns (34) and (36) it follows that
M, — ﬁnw FiW,, 37)

Obviously, the singularities of the integral equations are attributable to the asymptotic values of
the matrix s~ 'M(s) as s — co. By separating the singular part M and using the integral formulas
(Friedman, 1969)

+to ¢ o 2i e is(t—
et de =" gand eV ds = 216(t —x) (38)

. s t—x .

eqns (29) may be expressed as

— iJ“ [JHC M, e 0= ds} v(r)dr+ ir [Jﬂo <1M(s) +Mw>e’5(’y") ds} V(1) de
2r ) 1) 2] 1) \s

1 [+ |
+271J ue ™ds=t, |x|<a (39

The above is rearranged in the form
/ a + oo 1 )
D.'W_ Y (x)+ — J Mdt lj U (M(s)-l—Mx)e”“‘“") ds}u//(t) dt
L 2 ) 1) \s
—1

D oo .
+ 22 J pis)e ™ ds=D_'ty |x| <a (40)

There exists a matrix A~' which is composed of eigenvectors of D_'W_ to make D' W diagonal,
ie.

ADZ'W_A~! = diag[/] (41)
where A, are the eigenvalues of D'W_, . Therefore, eqn (40) can be written as

diag [L]AY(x) + — J 14U d +AD_! 2; fa [J+r (iM(s)—kM@)e“(""') ds} v(r)de

—a — o0

2n

— 0

AD_ ! [+ A
+ = J p(s)e ™ ds =AD 'ty |x|<a (42)

Let
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AY(X) = a1 Yar Yas Yasd” = ¥a(x)
ADZ u(s) = v(s)
AD_ 'ty (s) = P(s)

Thus, eqns (40) can be decoupled as

Ias()+ L f I g +J S Fyr() di

a an=1

2n

— 0

1 [+ .
+ J v;(s)e ™ ds=Pi(x) |x|<a i=12,3 (43)

where [F;] whose elements are the bounded Fredholm kernels, is a 3 x 3 matrix defined as

' + o0
[F;] =AD.' — 2 J (lM(s)—i—MOO)e’S(’“") dsA™! (44)

The analytic solution of eqn (43) has been extensively studied (Muskhelishvilli, 1953) by using
the regularization method, which is this case becomes cumbersome. Here we try to use an approxi-
mation method described by Erdogan (1969) to find the stress intensity factors.

In the normalized interval of ¢ = x/a and © = t/a, it can be shown that the fundamental functions
of dominant part of the integral equations are the weight function of the Jacobi polynomials. In
order to preserve the correct nature of singularities of the problem, the solution of eqn (43) may
be expressed as (Erdogan, 1984).

Yai) = g:(Ow(1), gi(1) =), C,PYP(r) 1] <1 (45)
n=0
where
wi(t) =(1—1)(1+1)"
i 1—2i 1 i 1—Ad 1
= a2 P oy T2 k=2
1
=By = — 4

oy = P ) (46)

and PP (f) is the Jacobi polynomial, C% are the unknown constants yet to be evaluated.
By considering the orthogonality relations of Jacobi polynomials (Gradshteyn and Ryzhik,
1980)

n+#k

. 0
@h) (1 ) ={
J Pn (Z)Pk (I)W(l) dr = {0/((&,[3)’ n==%k

—1

20D (e + DI(B+1)
I'(a+p+2)

0P =
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204D (k+ o+ DT (k+ f+1) P
T Qk+at B DkT(ktatprl) T
together with P§” (¢) = 1it can be concluded that the condition (17) is identically satisfied provided

that C{ = 0.
Using the following relation (Karpenko, 1966):

0(7 B —

(47)

1 1
ﬂ»kpyk’f’k>(x)wk(x>+f P (o0 gy
)i

14 52)12
H;)P;(I“A =0 (x) Ix| < 1

- | (48)

1 AZIQ
20 e 1y PP (0 £ G () ] >

where G{(x) is the principal part of w,(x)P*P(x) at infinity, the singularity of eqn (43) in
removed such that

© 1 i 1/2 o0 4
pye [”")Pwﬂk)@}z S HYQOCr =) k=123 <1 @9)

n=1m=1
where

1

H,"(0) = af F, (0P (1w (o) de

—1

+

1 y
=10 &0 e e4(o1T=P(c>—27J o(s) e ds

— 0

By using the orthogonality relations (47) again the following algebraic equations for C% are
obtained as

1 1/2 © 4
( +§) 0 "C+ > Y YCr=qu =123 k=1.2,... (50)

n=1m=1
where

Q= J aQP=r Qw0 dL

Yin = Jl Hy" P (Owi() dC (1)

In fact, the series in eqn (50) is truncated after the first N terms leading to a system of 3N
simultaneous linear algebraic equations for the constants C%. The number N must be large enough
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to yield the results that are within a specified degree of accuracy. After the constants C% evaluated
from eqn (50), the traction components o,,, 6,,, 63, for |{| > 1 on the plane containing the crack
can be obtained in terms of the solutions of eqns (43) as

AT e c) |

N 1/2
t(() =D, A"} < (1+A2) (=D CHDEPEOCE - +O0(1) (52)

n=1

(1 _’_/L3)1/2

DR D P ) C

- J

where O(+) represents the higher-order terms. The stress intensity factor can be obtained as (at the
right-hand-side crack tip).

N

1+/L2 1/2
(E20 e (e DT (' DUV TN (g Tel
k; .
ky —hmD A~ Z < ) -
Rl n= :
1422172
D i ypem o
((1 )12 h
fzﬁlpflapﬁl)(l)ci
N .
= DOQ/\il Z < : d (53)

(147"
L 2
where we have used the fact that G, (x), the princikpal part of w({) P ({) is bounded and the

Jacobi polynomials P®"9({) may be calculated by the following (see e.g. Gradshteyn and Ryzhik
(1980)):

2ﬂ3P£,“3'ﬂ3)(1)C3

d}’l
PrP(0) = ( )(1—C) A+0~"

[(1 =01 +0]

4. Numerical result

In this section, numerical examples are given to illustrate the method of solution outlined in
Section 3. The material (PVDF) parameters used in the numerical computation are given in
Appendix C. The laminated plate is balanced symmetrically which has ply angles [0°/45°/90°]s. All
the layers are considered to have the same thickness 4. The Jacobi-type integrals and the improper
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Fig. 2. Variation of k; under mode I loading as a function of /1/a for various crack locations.

25
— 0/45
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2[ —— 90/90
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_0.5 L L Il L 1
0.2 04 0.6 0.8 1 1.2 14

h/a
Fig. 3. Variation of k;; under mode I loading as a function of /1/a for various crack locations.

integrals, were numerically evaluated by employing the Gauss—Jacobi and Gauss—Legendre quad-
rature formulae (Davis and Rabinowitz, 1984), respectively.

It is noted that the intensity factors presented in this study are evaluated at the right-hand side
crack tip. Numerical, value of the intensity factors have been calculated for the following three
modes: in-plane normal (mode I), in-plane shear (mode II), anti-plane (mode III) crack surface
loadings, which are normalized by the corresponding a\/az).

4.1. Mode I loading

Under mode I loading, the major stress intensity factor x; and coupling stress intensity factors
Ky against hi/a for various crack locations are plotted in Fig. 2 and Fig. 3, respectively.

4.2. Mode Il loading

Under mode II loading, the major stress intensity factor x;; and coupling stress intensity factors
K, against /1/a for various crack locations are displayed in Figs 4 and 5, respectively.
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Fig. 4. Variation of k;; under mode II loading as a function of /i/a for various crack locations.
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Fig. 5. Variation of k; under mode II loading as a function of //a for various crack locations.
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Fig. 6. Variation of «;; under mode III loading as a function of //a for various crack locations.
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4.3. Mode Il loading

4265

Under mode III loading, the major stress intensity factor r; against //a for various crack

locations are shown in Fig. 6.

Appendix A

In this Appendix, we will prove that BA~' is independent of y.

For example, let p, be a double root, then we have

AV =Ta, a° a;] BY=[b, b b,

(A1)

In the literature (Yang et al., 1997), it has been proved that matrix B"(A")~" is a Hermitian

matrix, i.e.
ﬁ] -1 B]
[b; b} bs]-[a, a] 33]71 = —|a] : l_’/1
a;] b,

In this case,
A=[a, aj+ya, a;] B=Ib ' +yb;  bs]

From eqn (A2), one can obtain

[T T
=
=
bl
|
|
= =

[a, a} a;]

I

W
{—a}

S

Thus, on can readily get

51 l-)1
ay|[by by+yb, by]=— b’ [a, aj+ya, a;]
a, l-’3
So
f-ll —1 Bl
[b, bi+yb, bs]-[a, aj+ya, a;]”' = —|a] - b
a, b,

which states that BA~' is independent of y and is also a Hermitian matrix.

Analogously, the case that p;, is a k-fold root can be treated.

(A2)

(A3)

(A4)

(A5)

33]71
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Appendix B

In this Appendix, we discuss the asymptotic behavior of the matrix s~ 'k,.
By using eqns (9) and (13), for any layer (such as the k-th layer), we have,

it A*E" AYES[E
— _ (B1)
i AE; AE; |[A

t B E/ BTE: =
o |=—is _ (B2)
t —B E; —B E; [|A

where the superscripts + and — indicate the corresponding value evaluated at the upper/lower

surface of the layer.
From eqns (B1) and (B2), it follows that

t B*E; BYEf J[A*Ef A*Ef 7 I[dt
. |=—is - - (B3)
(. —-B E; —BE; ||AE;, A E;, i

Thus, we have

and

1 [Bﬂzr BYE; }[Aﬂﬁ A*E;J—l
S

—BE; —-BE;||AE; AE;

7kk = —1
[ B*E} BTE; HE* HE; }—[A*Ei K*E;}—l
= —l - - - -
—BE; —BE; Er Er A"E; A E;

B* BYESE; A" ATESE; 1!
- _ - _ _ (B4)
—B EES —-B- A E[ES A~
During the derivation of eqn (B4) we used the following relations
EfEf =1, E;E; =1 (B5)
which can proved by the definition of E, and E,. Also, it is easy to obtain
lim E;Ef =0= lim ESE; (B6)

=+ 00 5=+ 00
We can write
At AYESE; 7!
e

explicitly as
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[ At R*EZ*ET_[CH Clz} (B7)

A E Ef A~ G, €y
where
Cii=—(AEE) A [AESE —A"(AE E))'A]!
C,=—A")'A"ESE/[A—A EEf (A7) 'ATESE[ ]

C, =[A"EfE; —A"(AE Ef)'AT]!
C,=[A"—AEEf(A") 'ATEJE[ ]!
So, it follows that
—1 _ - - _ _ -
(K) = —B'(AE/E)) A [AESE AT (A BB R
11
+BYESE;[ATESE; —AT(A"ETEf)'A7]!

—B*(AY) 'ATESE; [A-—AETES (AN 'ATESE ]!

VRS
a\ !
—_
=
=
—
(%)
I

+B'ESE/[A—A EEf(A") 'ATESE ]!
<__1Kk> =B E, ES(AEEf) '"A [ATESE; —A*(AE;ES) 'A ]!
21
—B [ATE;E; —AT(A"E Ey) 'A ]!
(;;Kk>22 =B E ES(A") 'A*ESE;[A-—A E E;(AY) 'ATESE; ]!
—B [A—AEEf(A") '"A*E;E; ]!

By means of eqn (B6) and the conclusion of Appendix A, we can obtain

o B+ (A*)"! 0 —iBA~!
hm 7kk = — - - =
s+ g 0 —iB-(A)"!

I
1
IS
|
|
L

—iBAl}

where Y, = iAB™', which is Hermitian.
For s » — oo substituting

Ef E;
_ } with | _ }
E; Ef

in eqn (B4) we can readily obtain
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1 —iBA™! —-Y;!
lim -k, = |: = [ (B9)
sotws iBA™! —-Y.!

This completes the proof of eqn (23).

Appendix C

The material parameters of PVDF (Varadan et al., 1989):

(361 1.61 142 0 0 0

313 131 0 0 0

. 1.63 0 0 0

055 0 0

059 0

i 0.69 |
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