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Abstract

In this paper\ the interface crack problems of a multilayered anisotropic medium under a state of
generalized plane deformation are considered within the framework of anisotropic theory[ A general solution
procedure is introduced such that it can be uniformly applied to media with transversely isotropic\ ortho!
tropic\ monoclinic\ etc[ layers[ The problem is reduced to the solution of a system of singular integral
equations by means of Fourier transform method and the sti}ness matrix formulation[ A Jacobi polynomial
technique is then used to solve the integral equations numerically[ The stress intensity factors are provided[
The stress intensity factors have been calculated numerically and displayed graphically[ Þ 0888 Elsevier
Science Ltd[ All rights reserved[

0[ Introduction

In recent years\ the expanded use of composite materials in many modern engineering appli!
cations has attracted considerable research attention to the damage analysis of a laminated medium[
In order to ensure structural integrity\ understanding of fracture behavior of this structure is of
great importance[ Cracks are likely to occur on grain boundaries and bimaterial interfaces in
polycrystal alloys and composite materials[ It is\ therefore\ of practical importance to be able to
assess the stress _elds near such interface cracks[

The problem of an interface crack between dissimilar isotropic half!spaces was studied by many
authors such as Williams "0848#\ England "0854#\ Erdogan "0854#\ etc[ Solutions to interface crack
problems of dissimilar anisotropic half!space can be found in the works of Clements "0860#\ Ting
"0889# and Suo "0889#[ In Chatterjee "0866#\ the problems of laminated composite beam!type
structures containing an interlaminar crack were considered where the interlaminar is isotropic[
This work may have a signi_cant contribution to the failure of laminated composites[ Thangjitham
et al[ "0882# extended this method to the interlaminar crack problems of a laminated anisotropic
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medium\ assuming that the crack was embedded within a thin isotropic matrix interlaminar region
bounded by two adjacent anisotropic layers[ This assumption circumvents the di.culties associated
with the oscillatory singular behavior of the stress _eld near the crack tip\ but raises questions\
such as how to determine the thickness of the interlaminar^ and it is also only valid for composite
material laminates[ When each layer of the laminate is homogeneous and anisotropic other than
composite\ i[e[ without the same matrix\ the thin interlaminar will not exist[

Many of the anisotropic materials used in engineering exhibit orthotropic and transverse iso!
tropic symmetry^ in such media degenerate cases may exist\ i[e[ an eigenvalue pi may be a multiple
root as obtained from Stroh|s method[ If the degeneracy is {semisimple|\ i[e[ if the number of
independent eigenvectors is equal to the multiplicity of the eigenvalue\ the solution can be obtained
in the same way to the {simple| "Ting\ 0877#[ If the degeneracy is {nonsemisimple|\ a di}erent
method should be used to solve the problem\ which is the main purpose of this paper[

In this paper\ we consider the interface crack problem of a laminated anisotropic plate under a
state of generalized plane deformation[ Instead of assuming a thin isotropic matrix interlaminar
region\ we assume that each layer of the laminate is ideally bonded[ For the sake of generality\ all
layers are considered to be arbitrary anisotropic\ which may be isotropic\ orthotropic or transverse
isotropic symmetry\ etc[ and they may be composite or homogeneous[ The general solution
procedure is introduced for these degenerates cases[ As an e.cient approach to the analysis of
layered media\ the sti}ness matrix formulation "Chatterjee\ 0866^ Choi and Thangjitham\ 0880# is
extended to the current crack problem[ By means of Fourier transforms the problem is reduced to
a system of simultaneous algebraic equations by using the Jacobi polynomial approximation\ the
stress intensity factors are obtained in terms of the solutions of the corresponding integral equa!
tions[ Numerical methods are employed to determine the stress intensity factors\ which have been
displayed graphically[

1[ Governing equations and general solution

As shown in Fig[ 0\ consider an N!layer laminated anisotropic plate containing an interface
crack of length 1a located between the j!th and " j¦0#!th layers[ The laminate layers are perfectly
bonded except at the crack[

In order to maintain generality in the analysis\ each layer of the laminated plate is considered
to be arbitrary anisotropic[ The surface tractions are applied such that all _eld variables are only
functions of x0 and x1\ i[e[ a state of generalized plane deformation is assumed]

u0 � u0"x0\ x1#\ u1 � u1"x0\ x1#\ u2 � u2"x0\ x1#

where\ u0\ u1\ u2 represent the displacements in the x0!\ x1!\ x2!directions\ respectively[ The general
displacement vector is de_ned as

u � ðu0 u1 u2ŁT

The transform pair for a generic function `"x0\ x1# is de_ned as

½̀ "s\ x1# � g
¦�

−�

`"x\ x1# eisx dx\ `"x\ x1# �
0
1p g

¦�

−�

½̀ "s\ x1# eisx ds "0#
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Fig[ 0[ Con_guration of an anisotropic laminate with an interface crack[

where the overtilde ½ denotes the transformed quantity\ s is the transform variable\ and we let
x0 � x[

Introduce the following matrices

"Q#ik � Ci0k0\ "R#ik � Ci0k1\ "T#ik � Ci1k1\ "i\ k � 0\ 1\ 2#

where Cijrs are the elasticity constants[ Matrices Q and T are symmetric and positive de_nite due
to the strain energy being positive[

By letting y � −isx1 and using the Fourier transform\ the equations of equilibrium in the
absence of body forces may be expressed as follows]

T
11u½

1y1
¦"R¦RT#

1u½

1y
¦Qu½ � 9 "1#

or in the form

1

1y
h � Nh "2#

where

h � &
u½

$RT¦T
1

1y% u½'\ N � $
−T−0RT T−0

RT−0RT−Q −RT−0% "3#

It can be proved that N admits no real eigenvalues\ and its six eigenvalues form three conjugate
pairs "Suo\ 0889#[ Without the loss of generality\ let pi "i � 0\ 1\ 2# be the eigenvalues with positive
imaginary part and ji be the corresponding eigenvectors[ In this paper\ the assumption that pi are
distinct is not necessary[

If pi\ is a single root\ the solutions to eqn "2# can be readily obtained as
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hi"y\ pi# � ji eypi "4#

If pi is a k!fold root "0 ¾ k ¾ 2# and there exists only one independent eigenvector ji associated
with pi\ the solution to eqn "2# should be written as

hi"y\ pi# � ji eypi

hi¦j"y\ pi# � $ji¦j¦ s
i

n�0

0
n

yn"N−piI#nji¦j% eypi " j � 0\ [ [ [ \ k−0# "5#

where

"N−piI#j¦0ji¦j � 9\ and "N−piI#jji¦j � 9

In fact

ji¦j �
djji

dpj
i

� j" j#
i � j;"N−piI#−jji

then

hi¦j � $j" j#
i ¦ s

j

n�0

j;
" j−n#;n

ynj" j−n#
i % eypi "6#

So\ the general solution to eqn "2# is

h � s
2

n�0

ðJi"s#hi"y\ pi#¦Di"s#hi"y\ p¹i#Ł

� s
2

i�0

ðJi"s#zi"y# eypi¦Di"s#z¹i"y# eypiŁ "7#

where zi can be determined by eqns "5# and "6#[
Let

ji � $
ai

bi% and j?i � $
a?i
b?i% [ [ [ j" j#

i � $
a" j#

i

b" j#
i %

zi � $
gi"y#

hi"y#%
then\ it follows that

u½ � s
2

i�0

ðJi"s#gi eypi¦Di"s#g¹ i eypiŁ � AE0¦JAÞE1D "8#

in which
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A"y# � ðg0 g1 g2Ł\ J � ðJ0 J1 J2ŁT\ D � ðD0 D1 D2ŁT

E0 � diag ðe−ispix1Ł\ E1 � diag ðe−ispix1Ł "i � 0\ 1\ 2# "09#

From the constitutive relations\ the stresses are given by

t½� &
s½01

s½11

s21
'� 0−isRT¦T

1

1x11 u½ � −is 0RT¦T
1

1y1 u½ "00#

Therefore\ eqn "3# can be rewritten as

h � $
u½

is−0 t½% "01#

the above and eqn "7# imply that

t½� −is ðBE0J¦BÞE1DŁ "02#

where

B"y# � ðh0 h1 h2Ł

It is obvious that both A and B are non!singular[ In Appendix A\ we prove that BA−0 was
independent of y[

2[ Statement of the problem and the singular integral equations

For each layer\ the general solutions for displacements and stresses are expressed in terms of six
unknown constants Ji and Di^ i � 0\ 1\ 2[ Consequently\ complete solution for a N!layer plate
requires a set of 5N appropriate boundary and interface conditions to determine 5N unknown
constants[

The problem subjected to the following boundary and continuity conditions]

"t#¦
0 � fu"x#^ =x= ³ �

"t#¦
N � fl "x#^ =x= ³ �

"u#−
k � "u#¦

k¦0^ =x= ³ �\ k � 0\ 1\ [ [ [ \" j−0#\" j¦0#\ [ [ [ \"N−0#

"t#−
k � "t#¦

k¦0^ =x= ³ �\ k � 0\ 1\ [ [ [ \"N−0# "03#

and

"u#−
j � "u#¦

j¦0^ a ³ =x= ³ �

"t#¦
j¦0 � t9"x# � ðt90 t91 t92ŁT^ =x= ³ a

GC
du � 9 "04#
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where the subscripts k refer to the layer number\ the superscripts ¦ and − indicate the cor!
responding value evaluated at the upper:lower surface of the plate and fu\ fl\ t9 are the distribution
functions for the applied traction on the upper\ lower bounding surfaces and crack surface\
respectively[ C is any contour enclosing the crack and eqn "04#2 represents the single value of
displacements[

Introduce

c"t# �
d
dx

ð"u# j−"u# j¦0Ł =x= ³ � "05#

Then\ the displacement continuity condition outside the crack and the single!valuedness of dis!
placements can be rewritten as

c"x# � 9\ a ³ =x= ³ �\ g
a

−a

c"x# dx � 9 "06#

So far\ a system of 5N equations is yielded for the 5N unknown constants[ In order to circumvent
lengthy algebraic manipulations\ the sti}ness matrix formulation "Chatterjee\ 0866# is extended to
the analysis of current interface crack problems under a state of generalized plane deformation[

The traction vectors t½2"s# of the k!th layer can be expressed in terms of the corresponding
displacement vectors u½2"s# as

$
t½¦

−t½−%k

� kk $
u½¦

u½−%k

"07#

where kk is the 5×5 local sti}ness matrix of the k!th layer\ which is given in Appendix B "which is
Hermitian when pi is distinct#[

We also can rewrite eqn "07# as

$
t½¦

−t½−%k

� $
kk

00 kk
01

kk
10 kk

11% $
d½¦

k

d½−
k % "08#

where\ d½2
k �"u½#2

k and kk
ij"s#\ i\ j � 0\ 1 are the 2×2 submatrices of kk "s#[

To be concise\ we introduce

d½0"s# � d½¦
0 "s#\ d½N¦0"s# � d½−

N "s#

d½k¦0"s# � d½−
k "s# � d½¦

k¦0"s#^ k � j

Then combining eqns "03# and "08# the traction continuity condition on the crack plane can be
written as

kj
10d½ j¦kj

11d½
−
j ¦kj¦0

00 d½¦
j¦0¦kj¦0

01 d½ j¦1 � 9 "19#

From eqns "05# and "06#\ one can obtain
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Dd½ j¦0 � d½−
j "s#−d½¦

j¦0"s# �
i
s g

a

−a

c"x# eisx dx "10#

Let

d½−
j � d½ j¦0¦C0Dd½ j¦0\ d½¦

j¦0 � d½ j¦0¦C1Dd½ j¦0 "11#

where d½ j¦0 is a vector with four components representing the interfacial displacements between the
j!th and " j¦0#!th layers without crack and Ci^ i � 0\ 1 are the 2×2 unknown constant matrices
yet to be evaluated with C1−C0 � I[

In Appendix B\ we derived the asymptotic nature of the matrix s−0kk"s# as

lim
s:¦�

0
s
kk"s# � $

Y−0
k 9

9 YÞ−0
k %

lim
s:−�

0
s
kk"s# � $

−YÞ−0
k 9

9 −Y−0
k % "12#

where Yk � iAB−0\ is Hermitian "Ting\ 0877^ Yang et al[\ 0886#[
So\ the asymptotic behaviors of s−0kk"s# and vector d½k"s# can be expressed as

lim
=s=:�

0
s $

kk
00"s# kk

01"s#

kk
10"s# kk

11"s#%� $
kk

00� 9

9 kk
11�% lim

=s=:�
d½k"s# � 9\ k � 0\ 1\ [ [ [ \"N¦0# "13#

Combining eqns "19# and "13#\ Ci are readily evaluated as

C0 � k�kj¦0
00�\ C1 � −k�kj

11� "14#

in which the matrix k� is de_ned as

k� � ðkj¦0
00�¦kj

11�Ł−0 "15#

Through successive applications of eqns "03# to the layer sti}ness matrix eqn "08#\ together with
eqns "19#\ "11# and "14#\ a global sti}ness matrix equation for an N!layer medium containing an
interface crack between the j!th and " j¦0#!th layers is constructed as

k0
00d½0¦k0

01d½1 � f½u

kk
10d½k¦"kk

11¦kk¦0
00 #d½k¦0¦kk¦0

01 d½k¦1 � 9

k � 0\ 1\ [ [ [ \" j−1#\" j¦1#\ [ [ [ \"N−0#\ j − 2

ki−0
10 d½ j−0¦"kj−0

11 ¦kj
00#d½ j¦kj

01d½ j¦0 � −kj
01k�kj¦0

00�Dd½ j¦0

ki
10d½ j¦"kj

11¦kj¦0
00 #d½ j¦0¦kj¦0

01 d½ j¦0 �"kj¦0
00 k�kj

11�−kj
11k�kj¦0

00�#Dd½ j¦0

ki¦0
10 d½ j¦0¦"kj¦0

11 ¦kj¦1
00 #d½ j¦1¦kj¦1

01 d½ j¦2 � −kj¦0
10 k�kj

11�Dd½ j¦0

kN
10d½N¦kN

11d½N¦0 � −f½l "16#

which can be expressed in matrix notation as
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Kd½ � f½¦GDd½ "17#

where K"s# is the 2"N¦0#×2"N¦0# banded and Hermitian global sti}ness matrix with half band
width 5\ d½ "s# is the vector of length 2"N¦0#!component column for the unknown interfacial
displacements\ f½"s# is the vector of length 2"N¦0#!component column representing the prescribed
traction applied on the upper and lower bounding surfaces\ G"s# is the 2"N¦0#×2"N¦0# matrix
containing the geometry and material properties of the j!th and " j¦0#!ith layers\ and Dd½ "s# is a
2"N¦0#!component column representing the crack surface displacements[

Combining eqns "08#\ "11#\ "14# and taking the inverse Fourier transform\ a system of integral
equations for c is obtained as

t¦j¦0 �
i

1p g
a

−a $g
¦�

−�

0
s
M"s# eis"t−x# ds%c"t# dt¦

0
1p g

¦�

−�

m"s# eisx ds\ =x= ³ � "18#

where

M � −kj¦0
00 k�kj

11�¦ s
1

n�0

kj¦0
0n Hn

m"s# � s
1

n�0

kj¦0
0n "L" j¦n#0f½u−L" j¦n#"N¦0#f½0# "29#

with

Hn � −L" j¦n#jk
j
01k�kj¦0

00�¦L" j¦n#" j¦0# "kj¦0
00 k�kj

11�−kj
11k�kj¦0

00�#¦L" j¦n#" j¦1#k
j¦0
10 k�kj

11�

"20#

and Lij"s# are the 2×2 submatrices of L"s# � K−0"s#[
For the purpose of examining the singular behavior of the integral equations\ the asymptotic

behaviors of the matrix s−0M"s# and of the forcing vector m"s# must _rst be investigated[ From
eqns "13# and "29#\ the corresponding asymptotic expressions are obtained as

lim
=s=:�

0
s
M"s# � −kj¦0

00�k�kj
11� � −M�

lim
=s=:�

m"s# � 9 "21#

By employing eqn "12# as s × 9\ we have

M−0
¦� � −"Yj¦0¦YÞ j# "22#

which means M¦� is Hermitian[ To make further progress\ write M¦� in its real and imaginary
parts]

M¦� � D�¦iW� "23#

where D� is real and symmetric and W� is real and antisymmetric[
Similarly\ for s × 9\ from eqn "10# we can obtain
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M−0
−� � −"YÞ j¦0¦Yj# "24#

and

M−� � −D�¦iW� "25#

From eqns "23# and "25# it follows that

M� �
s
=s=

D�¦iW� "26#

Obviously\ the singularities of the integral equations are attributable to the asymptotic values of
the matrix s−0M"s# as s : �[ By separating the singular part M and using the integral formulas
"Friedman\ 0858#

g
¦�

−�

s
=s=

eis"t−x# ds �
1i

t−x
and g

¦�

−�

eis"t−x# ds � 1pd"t−x# "27#

eqns "18# may be expressed as

−
i

1p g
a

−a $g
¦�

−�

M� e−is"t−x# ds%c"t# dt¦
i

1p g
a

−a $g
¦�

−� 0
0
s
M"s#¦M�1 eis"t−x# ds%c"t# dt

¦
0
1p g

¦�

−�

m"s# e−isx ds � t9 =x= ³ a "28#

The above is rearranged in the form

D−0
� W�c"x#¦

0
p g

a

−a

c"t#
t−x

dt¦D−0
�

i
1p g

a

−a $g
¦�

−� 0
0
s
M"s#¦M�1 eis"t−x# ds%c"t# dt

¦
D−0

�

1p g
¦�

−�

m"s# e−isx ds � D−0
� t9 =x= ³ a "39#

There exists a matrix L−0 which is composed of eigenvectors of D−0
� W� to make D−0

� W� diagonal\
i[e[

LD−0
� W�L−0 � diag ðliŁ "30#

where li are the eigenvalues of D−0
� W�[ Therefore\ eqn "39# can be written as

diag ðliŁLc"x#¦
L
p g

a

−a

c"t#
t−x

dt¦LD−0
�

i
1p g

a

−a $g
¦�

−� 0
0
s
M"s#¦M�1 eis"t−x# ds%c"t# dt

¦
LD−0

�

1p g
¦�

−�

m"s# e−isx ds � LD−0
� t9 =x= ³ a "31#

Let
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Lc"x# � ðcL0 cL1 cL2 cL3ŁT � cL"x#

LD−0
� m"s# � y"s#

LD−0
� t9"s# � P"s#

Thus\ eqns "39# can be decoupled as

licLi"x#¦
0
p g

a

−a

cLi"t#
t−x

dt¦g
a

−a

s
3

n�0

FincLi"t# dt

¦
0
1p g

¦�

−�

yi"s# e−isx ds � Pi"x# =x= ³ a\ i � 0\ 1\ 2 "32#

where ðFijŁ whose elements are the bounded Fredholm kernels\ is a 2×2 matrix de_ned as

ðFijŁ � LD−0
�

i
1p g

¦�

−� 0
0
s
M"s#¦M�1 eis"t−x# dsL−0 "33#

The analytic solution of eqn "32# has been extensively studied "Muskhelishvilli\ 0842# by using
the regularization method\ which is this case becomes cumbersome[ Here we try to use an approxi!
mation method described by Erdogan "0858# to _nd the stress intensity factors[

In the normalized interval of j � x:a and t � t:a\ it can be shown that the fundamental functions
of dominant part of the integral equations are the weight function of the Jacobi polynomials[ In
order to preserve the correct nature of singularities of the problem\ the solution of eqn "32# may
be expressed as "Erdogan\ 0873#[

cLi"t# � `i"t#wi"t#\ `i"t# � s
�

n�9

Ci
nP

"aibi#
n "t# =t= ³ 0 "34#

where

wi"t# �"0−t#ai"0¦t#bi

ak �
i

1pi
ln

0−lki
0¦lki

−
0
1

\ bk � −
i

1pi
ln

0−lki
0¦lki

−
0
1

"k � 0\ 1#

a2 � b2 � −
0
1

"35#

and P "ai\bi#
n "t# is the Jacobi polynomial\ Ck

n are the unknown constants yet to be evaluated[
By considering the orthogonality relations of Jacobi polynomials "Gradshteyn and Ryzhik\

0879#

g
0

−0

P "a\b#
n "t#P "a\b#

k "t#w"t# dt � 6
9\ n � k

u"a\b#
k \ n � k

u"a\b#
9 �

1"a¦b¦0#G"a¦0#G"b¦0#
G"a¦b¦1#
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u"a\b#
k �

1"a¦b¦0#G"k¦a¦0#G"k¦b¦0#
"1k¦a¦b¦0#k;G"k¦a¦b¦0#

k � 0\ 1\ [ [ [ "36#

together with P "a\b#
9 "t# � 0 it can be concluded that the condition "06# is identically satis_ed provided

that Ck
9 � 9[

Using the following relation "Karpenko\ 0855#]

lkP
"ak\bk#
n "x#wk"x#¦

0
p g

0

−0

P "ak\bk#
n "t#

wk"t#
t−x

dt

�

F

G

j

J

G

f

"0¦l1
k #0:1

1
P "−ak\−bk#

n−0 "x# =x= ³ 0

"0¦l1
k #0:1

1
ð"x−0#ak"x−0#bkP "ak\bk#

n "x#¦G�
kn"x#Ł =x= × 0

"37#

where G�
kn"x# is the principal part of wk"x#P "ak\bk#

n "x# at in_nity\ the singularity of eqn "32# in
removed such that

s
�

n�0

Ck
n $

"0¦l1
k #0:1

1
P "−ak\−bk#

n−0 "z#%¦ s
�

n�0

s
3

m�0

Hkm
n "z#Cm

n � ek"z# k � 0\ 1\ 2^ =z= ³ 0 "38#

where

Hkm
n "z# � a g

0

−0

Flm"z\ t#P "al\bl#
n "t#wl"t# dt

e"z# � ðe0"z# e1"z# e2"z# e3"z#ŁT � P"z#−
0
1p g

¦�

−�

y"s# e−isaz ds

By using the orthogonality relations "36# again the following algebraic equations for Ck
n are

obtained as

"0¦l1
l #0:1

1
u"−al\−bl#

k−0 Cl
k¦ s

�

n�0

s
3

m�0

Ylm
knC

m
n � qkl l � 0\ 1\ 2^ k � 0\ 1\ [ [ [ "49#

where

qkl � g
0

−0

el "z#P "−al\−bl#
k−0 "z#wl"z# dz

Ylm
kn � g

0

−0

Hlm
n P "−al\−bl#

k−0 "z#wl"z# dz "40#

In fact\ the series in eqn "49# is truncated after the _rst N terms leading to a system of 2N
simultaneous linear algebraic equations for the constants Ck

n[ The number N must be large enough
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to yield the results that are within a speci_ed degree of accuracy[ After the constants Ck
n evaluated

from eqn "49#\ the traction components s11\ s01\ s21 for =z= × 0 on the plane containing the crack
can be obtained in terms of the solutions of eqns "32# as

t"z# � D�L−0 s
N

n �0

F

G

G

G

j

J

G

G

G

f

"0¦l1
0#0:1

1
"z−0#a0"z¦0#blP "a0\b0#

n "z#C0
n

"0¦l1
1#0:1

1
"z−0#a1"z¦0#b1P "a1\b1#

n "z#C1
n

"0¦l1
2#0:1

1
"z−0#a2"z¦0#b20P "a2\b2#

n "z#C2
n

J

G

G

G

f

F

G

G

G

j

¦O"0# "41#

where O"=# represents the higher!order terms[ The stress intensity factor can be obtained as "at the
right!hand!side crack tip#[

&
kI

kII

kIII'� lim
z:0

D�L−0 s
N

n�0

F

G

G

G

j

J

G

G

G

f

"0¦l1
0#0:1

1
"z−0#a0"z¦0#b0P"a0\b0#"z#C0

n

*

*

"0¦l1
2#0:1

1
"z−0#a2"z¦0#b2P"a2\b2#

n "z#C2
n

J

G

G

G

f

F

H

H

G

j

� D�L−0 s
N

n�0

F

G

G

G

j

J

G

G

G

f

"0¦l1
0#0:1

1
1b0P"a0\b0#

n "0#C0
n

*

*

"0¦l1
2#0:1

1
1b2P"a2\b2#

n "0#C2
n

J

G

G

G

f

F

H

H

G

j

"42#

where we have used the fact that G�
kn"x#\ the princikpal part of wk"z#P"ak\bk#

n "z# is bounded and the
Jacobi polynomials P"ak\bk#

n "z# may be calculated by the following "see e[g[ Gradshteyn and Ryzhik
"0879## ]

P"a\b#
n "z# �

"−0#n

1nn ;
"0−z#−a"0¦z#−b

dn

dxn
ð"0−z#a¦n"0¦z#b¦nŁ

3[ Numerical result

In this section\ numerical examples are given to illustrate the method of solution outlined in
Section 2[ The material "PVDF# parameters used in the numerical computation are given in
Appendix C[ The laminated plate is balanced symmetrically which has ply angles ð9>:34>:89>Łs[ All
the layers are considered to have the same thickness h[ The Jacobi!type integrals and the improper
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Fig[ 1[ Variation of kI under mode I loading as a function of h:a for various crack locations[

Fig[ 2[ Variation of kII under mode I loading as a function of h:a for various crack locations[

integrals\ were numerically evaluated by employing the GaussÐJacobi and GaussÐLegendre quad!
rature formulae "Davis and Rabinowitz\ 0873#\ respectively[

It is noted that the intensity factors presented in this study are evaluated at the right!hand side
crack tip[ Numerical\ value of the intensity factors have been calculated for the following three
modes ] in!plane normal "mode I#\ in!plane shear "mode II#\ anti!plane "mode III# crack surface
loadings\ which are normalized by the corresponding szpa[

3[0[ Mode I loadin`

Under mode I loading\ the major stress intensity factor kI and coupling stress intensity factors
kII against h:a for various crack locations are plotted in Fig[ 1 and Fig[ 2\ respectively[

3[1[ Mode II loadin`

Under mode II loading\ the major stress intensity factor kII and coupling stress intensity factors
kI against h:a for various crack locations are displayed in Figs 3 and 4\ respectively[
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Fig[ 3[ Variation of kII under mode II loading as a function of h:a for various crack locations[

Fig[ 4[ Variation of kI under mode II loading as a function of h:a for various crack locations[

Fig[ 5[ Variation of kIII under mode III loading as a function of h:a for various crack locations[
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3[2[ Mode III loadin`

Under mode III loading\ the major stress intensity factor kIII against h:a for various crack
locations are shown in Fig[ 5[

Appendix A

In this Appendix\ we will prove that BA−0 is independent of y[
For example\ let p0 be a double root\ then we have

A"0# � ða0 a? a2Ł B"0# � ðb0 b? b2Ł "A0#

In the literature "Yang et al[\ 0886#\ it has been proved that matrix iB"0#"A"0##−0 is a Hermitian
matrix\ i[e[

ðb0 b?0 b2Ł = ða0 a?0 a2Ł−0 � −&
a¹0

a¹?0
a¹2
'
−0

= &
b¹0

b¹ ?0
b¹2
' "A1#

In this case\

A � ða0 a?0¦ya0 a2Ł B � ðb0 b?0¦yb0 b2Ł "A2#

From eqn "A1#\ one can obtain

&
a¹0

a¹ ?0
a¹2
' ðb0 b?0 b2Ł � −&

b¹0

b¹?

b¹2
' ða0 a?0 a2Ł "A3#

Thus\ on can readily get

&
a¹0

a¹ ?0
a¹2
' ðb0 b?0¦yb0 b2Ł � −&

b¹0

b¹?

b¹2
' ða0 a?0¦ya0 a2Ł "A4#

So

ðb0 b?0¦yb0 b2Ł = ða0 a?0¦ya0 a2Ł−0 � −&
a¹0

a¹ ?0
a¹2
'
−0

= &
b¹0

b¹ ?0
b¹2
'� ðb0 b?0 b2Ł = ða0 a?0 a2Ł−0

which states that BA−0 is independent of y and is also a Hermitian matrix[
Analogously\ the case that pi is a k!fold root can be treated[
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Appendix B

In this Appendix\ we discuss the asymptotic behavior of the matrix s−0kk[
By using eqns "8# and "02#\ for any layer "such as the k!th layer#\ we have\

$
u½¦

u½−%� $
A¦E¦

0 AÞ¦E¦
1

A−E−
0 AÞ−E−

1 % $
J
D% "B0#

and

$
t½¦

t½−%� −is $
B¦E¦

0 BÞ¦E¦
1

−B−E−
0 −BÞ−E−

1 % $
J
D% "B1#

where the superscripts ¦ and − indicate the corresponding value evaluated at the upper:lower
surface of the layer[

From eqns "B0# and "B1#\ it follows that

$
t½¦

t½−%� −is $
B¦E¦

0 BÞ¦E¦
1

−B−E−
0 −BÞ−E−

1 % $
A¦E¦

0 AÞ¦E¦
1

A−E−
0 AÞ−E−

1 %
−0

$
u½¦

u½−% "B2#

Thus\ we have

0
s
kk � −i$

B¦E¦
0 B¹ ¦E¦

1

−B−E−
0 −BÞ−E−

1 % $
A¦E¦

0 AÞ¦E¦
1

A−E−
0 AÞ−E−

1 %
−0

� −i $
B¦E¦

0 BÞ¦E¦
1

−B−E−
0 −BÞ−E−

1 % $
EÞ¦

1

EÞ−
0 % $

EÞ¦
1

EÞ−
0 %

−0

$
A¦E¦

0 AÞ¦E¦
1

A−E−
0 AÞ−E−

1 %
−0

� −i $
B¦ BÞ¦E¦

1 EÞ−
0

−B−E−
0 EÞ¦

1 −BÞ− % $
A¦ AÞ¦E¦

1 EÞ−
0

A−E−
0 EÞ¦

1 AÞ− %
−0

"B3#

During the derivation of eqn "B3# we used the following relations

EÞ¦
1 E¦

0 � I\ EÞ−
1 E−

0 � I "B4#

which can proved by the de_nition of E0 and E1[ Also\ it is easy to obtain

lim
s:¦�

E−
0 EÞ¦

1 � 9 � lim
s:¦�

E¦
1 EÞ−

0 "B5#

We can write

$
A¦ AÞ¦E¦

1 EÞ−
0

A−E−
0 EÞ¦

1 AÞ− %
−0

explicitly as
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$
A¦ AÞ¦E¦

1 EÞ−
0

A−E−
0 EÞ¦

1 AÞ− %
−0

� $
C00 C01

C10 C11% "B6#

where

C00 � −"A−E−
0 EÞ¦

1 #−0AÞ− ðAÞ¦E¦
1 EÞ−

0 −A¦"A−E−
0 EÞ¦

1 #−0AÞ−Ł−0

C01 � −"A¦#−0AÞ¦E¦
1 EÞ−

0 ðAÞ−−A−E−
0 EÞ¦

1 "A¦#−0AÞ¦E¦
1 EÞ−

0 Ł−0

C10 � ðAÞ¦E¦
1 EÞ−

0 −A¦"A−E−
0 EÞ¦

1 #−0AÞ−Ł−0

C11 � ðAÞ−−A−E−
0 EÞ¦

1 "A¦#−0AÞ¦E¦
1 EÞ−

0 Ł−0

So\ it follows that

0
−0
is

Kk100

� −B¦"A−E−
0 EÞ¦

1 #−0AÞ− ðAÞ¦E¦
1 EÞ−

0 −A¦"A−E−
0 EÞ¦

1 #−0AÞ−Ł−0

¦BÞ¦E¦
1 EÞ−

0 ðAÞ¦E¦
1 EÞ−

0 −A¦"A−E−
0 EÞ¦

1 #−0AÞ−Ł−0

0
−0
is

Kk101

� −B¦"A¦#−0AÞ¦E¦
1 EÞ−

0 ðAÞ−−A−E−
0 EÞ¦

1 "A¦#−0AÞ¦E¦
1 EÞ−

0 Ł−0

¦BÞ¦E¦
1 EÞ−

0 ðAÞ−−A−E−
0 EÞ¦

1 "A¦#−0AÞ¦E¦
1 EÞ−

0 Ł−0

0
−0
is

Kk110

� B−E−
0 EÞ¦

1 "A−E−
0 EÞ¦

1 #−0AÞ− ðAÞ¦E¦
1 EÞ−

0 −A¦"A−E−
0 EÞ¦

1 #−0AÞ−Ł−0

−BÞ− ðAÞ¦E¦
1 EÞ−

0 −A¦"A−E−
0 EÞ¦

1 #−0AÞ−Ł−0

0
−0
is

Kk111

� B−E−
0 EÞ¦

1 "A¦#−0AÞ¦E¦
1 EÞ−

0 ðAÞ−−A−E−
0 EÞ¦

1 "A¦#−0AÞ¦E¦
1 EÞ−

0 Ł−0

−BÞ− ðAÞ−−A−E−
0 EÞ¦

1 "A¦#−0AÞ¦E¦
1 EÞ−

0 Ł−0

By means of eqn "B5# and the conclusion of Appendix A\ we can obtain

lim
s:¦�

0
s
kk � −$

iB¦"A¦#−0 9

9 −iBÞ−"AÞ−#−0%� $
−iBA−0

−iBA−0%� $
Y−0

k

YÞ−0
k %

"B7#

where Yk � iAB−0\ which is Hermitian[
For s : −� substituting

$
EÞ¦

1

EÞ−
0 % with $

EÞ−
1

EÞ¦
0 %

in eqn "B3# we can readily obtain
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lim
s:¦�

0
s
kk � $

−iBA−0

iBA−0%� $
−YÞ−0

k

−Y−0
k % "B8#

This completes the proof of eqn "12#[

Appendix C

The material parameters of PVDF "Varadan et al[\ 0878#]

cE �

K

H

H

H

H

H

H

H

k

2[50 0[50 0[31 9 9 9

2[02 0[20 9 9 9

0[52 9 9 9

9[44 9 9

9[48 9

9[58

L

H

H

H

H

H

H

H

l

GPa

References

Clements\ D[L[\ 0860[ A crack between dissimilar anisotropic media[ Int[ J[ Engng Sci[ 8\ 146[
Chatterjee\ S[N[\ 0866[ On interlaminar defects in laminated composites[ Modern Developments in Composite Materials

and Structures\ ASME[
Choi\ H[J[\ Thangjitham\ S[\ 0880[ Stress analysis of multilayered anisotropic media[ J[ Appl[ Mech[ 47\ 271[
Davis\ P[J[\ Rabinowitz\ P[\ 0873[ Methods of Numerical Integration[ Academic Press\ Orlando\ FL[
England\ A[H[\ 0854[ A crack between dissimilar media[ J[ Appl[ Mech[ 21\ 399[
Erdogan\ F[\ 0854[ Stress distribution in bonded dissimilar materials with cracks[ J[ Appl[ Mech[ 21\ 392[
Erdogan\ F[\ 0858[ Approximate solutions of singular integral equations[ SIAM J[ Appl[ Math[ 06[
Erdogan\ F[\ 0873[ Mixed boundary value problems in mechanics[ In] Nemat Nasser S[ "Ed[#\ Mechanics Today\ Vol[

3[ Pergamon Press[ Oxford[
Friedman\ B[\ 0858[ Lectures on Applications Oriented Mathematics[ Holden!Day\ San Francisco[
Gradshteyn\ I[S[\ Ryzhik\ I[M[\ 0879[ Table of Integrals\ Series\ and Products[ Academic Press\ New York[
Karpenko\ L[N[\ 0855[ Approximate solution of singular integral equation by means of Jacobi polynomials[ PMM 29\

577[
Muskhelishvilli\ N[I[\ 0842[ Singular Integral Equations[ P[ Noordhoft\ Groninger\ Holland[
Suo\ Z[\ 0889[ Singularities Interfaces and crack in dissimilar anisotropic media[ Proc[ R[ Soc[ London\ A316\ 220[
Ting\ T[C[T[\ 0889[ Interface cracks in anisotropic bimaterials[ J[ Mech[ Phys[ Solids 27\ 494[
Ting\ T[C[T[\ 0877[ Some identities and the structure of Ni in the Stroh Formalism of anisotropic elasticity[ Quart[ Appl[

Math[ 35\ 098[
Ting\ T[C[\ Chyanbin Hwu\ 0877[ Sextic formalism in anisotropic elasticity for almost non!semisimple matrix ÐN[ Int[

J[ Solids Struct[ 13\ 54[
Varadan\ V[V[\ Roh\ Y[R[\ Varada\ V[K[\ Tancrell\ R[H[\ 0878[ Measurement of all the elastic and dielectric constants

of poled PVDF _lms[ Proceedings of 0878 Ultrasonics Symposium\ IEEE\ Montreal\ Quebec\ Canada\ pp[ 616Ð629[
Williams\ M[L[\ 0848[ The stresses around a fault or crack in dissimilar media[ Bull[ Seismal[ Soc[ Am[ 38\ 088[
Yang\ X[Y[\ Shen\ S[\ Kuang\ Z[B[\ The degenerate solution for piezothermoelastic materials[ Euro[ J[ Mech[ A:Solids

05\ 668[


